1. The concept of limit

Example 1.1. Let \(f(x) = \frac{x^2 - 4}{x - 2} \). Examine the behavior of \(f(x) \) as \(x \) approaches 2.

Solution. Let us compute some values of \(f(x) \) for \(x \) close to 2, as in the tables below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x) = \frac{x^2 - 4}{x - 2})</th>
<th>(x)</th>
<th>(f(x) = \frac{x^2 - 4}{x - 2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9</td>
<td>3.9</td>
<td>2.1</td>
<td>4.1</td>
</tr>
<tr>
<td>1.99</td>
<td>3.99</td>
<td>2.01</td>
<td>4.01</td>
</tr>
<tr>
<td>1.999</td>
<td>3.999</td>
<td>2.001</td>
<td>4.001</td>
</tr>
<tr>
<td>1.9999</td>
<td>3.9999</td>
<td>2.0001</td>
<td>4.0001</td>
</tr>
</tbody>
</table>

We see from the first table that \(f(x) \) is getting closer and closer to 4 as \(x \) approaches 2 from the left side. We express this by saying that “the limit of \(f(x) \) as \(x \) approaches 2 from left is 4”, and write

\[
\lim_{x \to 2^-} f(x) = 4.
\]

Similarly, by looking at the second table, we say that “the limit of \(f(x) \) as \(x \) approaches 2 from right is 4”, and write

\[
\lim_{x \to 2^+} f(x) = 4.
\]

We call \(\lim_{x \to 2^-} f(x) \) and \(\lim_{x \to 2^+} f(x) \) one-sided limits. Since the two one-sided limits of \(f(x) \) are the same, we can say that “the limit of \(f(x) \) as \(x \) approaches 2 is 4”, and write

\[
\lim_{x \to 2} f(x) = 4.
\]

Note that since \(x^2 - 4 = (x - 2)(x + 2) \), we can write

\[
\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2} (x + 2) = 4,
\]

where we can cancel the factors of \((x - 2) \) since in the limit as \(x \to 2 \), \(x \) is close to 2, but \(x \neq 2 \), so that \(x - 2 \neq 0 \). Below, find the graph of \(f(x) \), from which it is also clear that \(\lim_{x \to 2} f(x) = 4 \).
Example 1.2. Let \(g(x) = \frac{x^2 - 5}{x - 2} \). Examine the behavior of \(g(x) \) as \(x \) approaches 2.

Solution. Based on the graph and tables of approximate function values shown below,

\[
\begin{array}{|c|c|}
\hline
x & g(x) = \frac{x^2 - 5}{x - 2} \\
\hline
1.9 & 13.9 \\
1.99 & 103.99 \\
1.999 & 1003.999 \\
1.9999 & 10,003.9999 \\
\hline
\end{array}
\]

observe that as \(x \) gets closer and closer to 2 from the left, \(g(x) \) increases without bound and as \(x \) gets closer and closer to 2 from the left, \(g(x) \) decreases without bound. We express this situation by saying that the limit of \(g(x) \) as \(x \) approaches 2 from the left is \(\infty \), and \(g(x) \) as \(x \) approaches 2 from the right is \(-\infty \) and write

\[
\lim_{x \to 2^-} g(x) = \infty, \quad \lim_{x \to 2^+} g(x) = -\infty.
\]

Since there is no common value for the one-sided limits of \(g(x) \), we say that the limit of \(g(x) \) as \(x \) approaches 2 does not exists and write

\[\lim_{x \to 2} g(x) \text{ does not exits.}\]

Example 1.3. Use the graph below to determine \(\lim_{x \to 1^-} f(x) \), \(\lim_{x \to 1^+} f(x) \), \(\lim_{x \to 1} f(x) \) and \(\lim_{x \to 1^-} f(x) \).

Solution. It is clear from the graph that

\[\lim_{x \to 1^-} f(x) = 2 \quad \text{and} \quad \lim_{x \to 1^+} f(x) = -1.\]
Since \(\lim_{x \to 1^-} f(x) \neq \lim_{x \to 1^+} f(x) \), \(\lim f(x) \) does not exist. It is also clear from the graph that
\[
\lim_{x \to 1^-} f(x) = 1 \quad \text{and} \quad \lim_{x \to 1^+} f(x) = 1.
\]
Since \(\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) \), \(\lim f(x) = 1 \).

Example 1.4.

1. Graph \(\frac{3x + 9}{x^2 - 9} \).
2. Evaluate \(\lim_{x \to -3} \frac{3x + 9}{x^2 - 9} \).
3. Evaluate \(\lim_{x \to 3} \frac{3x + 9}{x^2 - 9} \).

Solution.

1. Note that \(f(x) = \frac{3x + 9}{x^2 - 9} = \frac{3}{x - 3} \) for \(x \neq -3 \). Then, by shifting and scaling the graph of \(y = \frac{1}{x} \), we obtain

![Graph of \(y = \frac{1}{x} \)](image)

2. Since \(f(x) = \frac{3x + 9}{x^2 - 9} = \frac{3}{x - 3} \) for \(x \neq -3 \), \(\lim_{x \to -3} \frac{3x + 9}{x^2 - 9} = \lim_{x \to -3} \frac{3}{x - 3} = -\frac{1}{2} \).

3. It is seen from the graph that \(\lim_{x \to 3} \frac{3x + 9}{x^2 - 9} = \pm \infty \). Hence, \(\lim_{x \to 3} \frac{3x + 9}{x^2 - 9} \) does not exist.

Example 1.5. Evaluate \(\lim_{x \to 0} \frac{\sin x}{x} \).

Solution. From the following tables and the graph

![Graph of \(\frac{\sin x}{x} \)](image)

one can conjecture that \(\lim_{x \to 0} \frac{\sin x}{x} = 1 \).

From now on, we will use the following fact without giving its proof.

\[
\lim_{x \to 0} \frac{\sin x}{x} = 1.
\]
Example 1.6. Evaluate \(\lim_{x \to 0} \frac{x}{|x|} \).

Solution. Note that
\[
\frac{x}{|x|} = \begin{cases}
1 & \text{if } x > 0 \\
-1 & \text{if } x < 0
\end{cases}
\]
So, \(\lim_{x \to 0^+} \frac{x}{|x|} = 1 \) while \(\lim_{x \to 0^-} \frac{x}{|x|} = -1 \). Since the left limit is not equal to the right limit, \(\lim_{x \to 0} \frac{x}{|x|} \) does not exist.

Example 1.7. Sketch the graph of \(f(x) = \begin{cases}
2x & \text{if } x < 2 \\
x^2 & \text{if } x \geq 2
\end{cases} \) and identify each limit.

(a) \(\lim_{x \to 2^-} f(x) \)
(b) \(\lim_{x \to 2^+} f(x) \)
(c) \(\lim_{x \to 2} f(x) \)
(d) \(\lim_{x \to 1} f(x) \)

Solution.
The graph is shown below.

And,
(a) \(\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} 2x = 4 \)
(b) \(\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} x^2 = 4 \)
(c) \(\lim_{x \to 2} f(x) = 4 \)
(d) \(\lim_{x \to 1} f(x) = \lim_{x \to 1} 2x = 2 \)

Example 1.8. Sketch the graph of \(f(x) = \begin{cases}
x^3 - 1 & \text{if } x < 0 \\
0 & \text{if } x = 0 \\
\sqrt{x} + 1 - 2 & \text{if } x > 0
\end{cases} \) and identify each limit.

(a) \(\lim_{x \to 0^-} f(x) \)
(b) \(\lim_{x \to 0^+} f(x) \)
(c) \(\lim_{x \to 0} f(x) \)
(d) \(\lim_{x \to 1} f(x) \)
Solution.

The graph is shown below.

And,

(a) \(\lim_{x \to -1} f(x) = \lim_{x \to -1} (x^3 - 1) = -1 \)

(b) \(\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \sqrt{x + 1} - 2 = -1 \)

(c) \(\lim_{x \to 0} f(x) = -1 \)

(d) \(\lim_{x \to -3} f(x) = \lim_{x \to -3} (x^3 - 1) = -2 \)

(e) \(\lim_{x \to 3} f(x) = \lim_{x \to 3} \sqrt{x + 1} - 2 = 0 \)

2. Computation of Limits

It is easy to see that for any constant \(c \) and any real number \(a \),

\[\lim_{x \to a} c = c, \]

and

\[\lim_{x \to a} x = a. \]

The following theorem lists some basic rules for dealing with common limit problems

Theorem 2.1 Suppose that \(\lim_{x \to a} f(x) \) and \(\lim_{x \to a} g(x) \) both exist and let \(c \) be any constant. Then,

(i) \(\lim_{x \to a} [c f(x)] = c \lim_{x \to a} f(x) \),

(ii) \(\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) \),

(iii) \(\lim_{x \to a} [f(x) g(x)] = \left[\lim_{x \to a} f(x) \right] \left[\lim_{x \to a} g(x) \right], \) and

(iv) \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \) provided \(\lim_{x \to a} g(x) \neq 0 \).

By using (iii) of Theorem 2.1, whenever \(\lim_{x \to a} f(x) \) exits,

\[\lim_{x \to a} [f(x)]^2 = \lim_{x \to a} [f(x) f(x)] = \left[\lim_{x \to a} f(x) \right] \left[\lim_{x \to a} f(x) \right] = \left[\lim_{x \to a} f(x) \right]^2. \]

Repeating this argument, we get that

\[\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x) \right]^n, \]

for any positive integer \(n \). In particular, for any positive integer \(n \) and any real number \(a \),

\[\lim_{x \to a} x^n = a^n. \]

Example 2.1. Evaluate

(1) \(\lim_{x \to -2} (3x^2 - 5x + 4). \)
(2) \(\lim_{x \to 3} \frac{x^3 - 5x + 4}{x^2 - 2} \).

(3) \(\lim_{x \to 1} \frac{x^2 - 1}{1 - x} \).

Theorem 2.2 For any polynomial \(p(x) \) and any real number \(a \),

\[
\lim_{x \to a} p(x) = p(a).
\]

Theorem 2.3 Suppose that \(\lim_{x \to a} f(x) = L \) and \(n \) is any positive integer. Then,

\[
\lim_{x \to a} n \sqrt[n]{f(x)} = n \sqrt[n]{\lim_{x \to a} f(x)} = n \sqrt[n]{L},
\]

where for \(n \) even, we assume that \(L > 0 \).

Example 2.2. Evaluate

(1) \(\lim_{x \to 2} \sqrt[3]{3x^2 - 2x} \).

(2) \(\lim_{x \to 0} \frac{\sqrt{x + 2} - \sqrt{2}}{x} \).

Theorem 2.4 For any real number \(a \), we have

(i) \(\lim_{x \to a} \sin x = \sin a \),

(ii) \(\lim_{x \to a} \cos x = \cos a \),

(iii) \(\lim_{x \to a} e^x = e^a \),

(iv) \(\lim_{x \to a} \ln x = \ln a \), for \(a > 0 \),

(v) \(\lim_{x \to a} \sin^{-1} x = \sin^{-1} a \), for \(-1 < a < 1\),

(vi) \(\lim_{x \to a} \cos^{-1} x = \cos^{-1} a \), for \(-1 < a < 1\),

(vii) \(\lim_{x \to a} \tan^{-1} x = \tan^{-1} a \), for \(-\infty < a < \infty\),

(viii) if \(p \) is a polynomial and \(\lim_{x \to p(a)} f(x) = L \), then \(\lim_{x \to a} f(p(x)) = L \).

Example 2.3. Evaluate \(\lim_{x \to 0} \sin^{-1} \left(\frac{x + 1}{2} \right) \).

Example 2.4. Evaluate \(\lim_{x \to 0} (x \cot x) \).

Theorem 2.5 (Sandwich Theorem) Suppose that

\[
f(x) \leq g(x) \leq h(x)
\]

for all \(x \) in some interval \((c, d)\), except possibly at the point \(a \in (c, d) \) and that

\[
\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L,
\]

for some number \(L \). Then, it follows that

\[
\lim_{x \to a} g(x) = L, \text{ too.}
\]
Example 2.5. Evaluate \(\lim_{x \to 0} \left[x^2 \cos \left(\frac{1}{x} \right) \right] \).

Example 2.6. Evaluate \(\lim_{x \to 0} f(x) \), where \(f \) is defined by

\[
f(x) = \begin{cases}
 x^2 + 2 \cos x + 1 & \text{if } x < 0 \\
 e^x - 4 & \text{if } x \geq 0
\end{cases}
\]

Example 2.7. Evaluate.

1. \(\lim_{x \to 0} \frac{1 - e^{2x}}{1 - e^x} \).
2. \(\lim_{x \to 1} \frac{x^2 + 2x - 3}{x^3 - 1} \).
3. \(\lim_{x \to 0} \frac{\sin x}{\tan x} \).
4. \(\lim_{x \to 0} \frac{5x}{\tan 2x} \).
5. \(\lim_{x \to 0} \frac{x^2 + x}{xe^{-2x+1}} \).
6. \(\lim_{x \to 0} x^2 \csc^2 x \).
7. \(\lim_{x \to -1} \left(\frac{1}{x - 1} - \frac{2}{x^2 - 1} \right) \).
8. \(\lim_{x \to 0} \frac{(1 + x)^3 - 1}{x} \).
9. \(\lim_{x \to 0} \frac{\sin |x|}{x} \).
10. \(\lim_{x \to 1} x \).
11. \(\lim_{x \to 1.5} [x] \).
12. \(\lim_{x \to -1} (x - [x]) \).

3. Continuity and its Consequences

A function \(f \) is **continuous** at \(x = a \) when

(i) \(f(a) \) is defined,
(ii) \(\lim_{x \to a} f(x) \) exists, and
(iii) \(\lim_{x \to a} f(x) = f(a) \).

Otherwise \(f \) is said to be **discontinuous** at \(x = a \).

Example 3.1. Let us see some examples of functions that are discontinuous at \(x = a \).

1. The function is not defined at \(x = a \). The graph has a hole at \(x = a \).
Example 3.2. Determine where \(f(x) = \frac{x^2 + 2x - 3}{x - 1} \) is continuous.

The point \(x = a \) is called a \textit{removable} discontinuity of a function \(f \) if one can remove the discontinuity by redefining the function at that point. Otherwise, it is called a \textit{nonremovable} or an \textit{essential} discontinuity of \(f \). Clearly, a function has a removable discontinuity at \(x = a \) if and only if \(\lim_{x \to a} f(x) \) exists and is finite.
Example 3.3. Classify all the discontinuities of

1. \(f(x) = \frac{x^2 + 2x - 3}{x - 1} \).
2. \(f(x) = \frac{1}{x^2} \).
3. \(f(x) = \cos \frac{1}{x} \).

Theorem 3.1 All polynomials are continuous everywhere. Additionally, \(\sin x \), \(\cos x \), \(\tan^{-1} x \) and \(e^x \) are continuous everywhere. \(\sqrt{x} \) is continuous for all \(x \), when \(n \) is odd and for \(x > 0 \), when \(n \) is even. We also have \(\ln x \) is continuous for \(x > 0 \) and \(\sin^{-1} x \) and \(\cos^{-1} x \) are continuous for \(-1 < x < 1 \).

Theorem 3.2 Suppose that \(f \) and \(g \) are continuous at \(x = a \). Then all of the following are true:

1. \((f \pm g) \) is continuous at \(x = a \),
2. \((f \cdot g) \) is continuous at \(x = a \), and
3. \((f/g) \) is continuous at \(x = a \) if \(g(a) \neq 0 \).

Example 3.4. Find and classify all the discontinuities of \(\frac{x^4 - 3x^2 + 2}{x^2 - 3x - 4} \).

Theorem 3.3 Suppose that \(\lim_{x \to a} g(x) = L \) and \(f \) is continuous at \(L \). Then,

\[
\lim_{x \to a} f(g(x)) = f \left(\lim_{x \to a} g(x) \right) = f(L).
\]

Corollary 3.4 Suppose that \(g \) is continuous at \(a \) and \(f \) is continuous at \(g(a) \). Then the composition \(f \circ g \) is continuous at \(a \).

Example 3.5. Determine where \(h(x) = \cos(x^2 - 5x + 2) \) is continuous.

If \(f \) is continuous at every point on an open interval \((a, b)\), we say that \(f \) is continuous on \((a, b)\).
We say that \(f \) is continuous on the closed interval \([a, b]\), if \(f \) is continuous on the open interval \((a, b)\) and

\[
\lim_{x \to a^+} f(x) = f(a) \quad \text{and} \quad \lim_{x \to b^-} f(x) = f(b).
\]

Finally, if \(f \) is continuous on all of \((-\infty, \infty)\), we simply say that \(f \) is continuous.

Example 3.6. Determine the interval(s) where \(f \) is continuous, for

1. \(f(x) = \sqrt{4 - x^2} \),
2. \(f(x) = \ln(x - 3) \).

Example 3.7. For what value of \(a \) is

\[
f(x) = \begin{cases}
x^2 - 1, & x < 3 \\
2ax, & x \geq 3
\end{cases}
\]

continuous at every \(x \)?
Example 3.8. Let

\[f(x) = \begin{cases}
2 \text{sgn}(x-1), & x > 1, \\
a, & x = 1, \\
x + b, & x < 1.
\end{cases} \]

If \(f \) is continuous at \(x = 1 \), find \(a \) and \(b \).

Theorem 3.5 (Intermediate Value Theorem) Suppose that \(f \) is continuous on the closed interval \([a, b]\) and \(W \) is any number between \(f(a) \) and \(f(b) \). Then, there is a number \(c \in [a, b] \) for which \(f(c) = W \).

Example 3.9. Two illustrations of the intermediate value theorem:

![Intermediate Value Theorem Illustration](image)

Corollary 3.6 Suppose that \(f \) is continuous on \([a, b]\) and \(f(a) \) and \(f(b) \) have opposite signs. Then, there is at least one number \(c \in (a, b) \) for which \(f(c) = 0 \).

4. **Limits involving infinity; asymptotes**

If the values of \(f \) grow without bound, as \(x \) approaches \(a \), we say that \(\lim_{x \to a} f(x) = \infty \). Similarly, if the values of \(f \) become arbitrarily large and negative as \(x \) approaches \(a \), we say that \(\lim_{x \to a} f(x) = -\infty \).

A line \(x = a \) is a **vertical asymptote** of the graph of a function \(y = f(x) \) if either

\[\lim_{x \to a^+} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^-} f(x) = \pm \infty. \]

Example 4.1. Evaluate

1. \(\lim_{x \to -3} \frac{1}{x+3} \)
2. \(\lim_{x \to -3} \frac{1}{(x+3)^2} \)
3. \(\lim_{x \to 1} \frac{(x-2)^2}{x^2 - 4} \)
4. \(\lim_{x \to 2} \frac{x^2 - 4}{x-2} \)
5. \(\lim_{x \to -2} \frac{x^2 - 4}{x - 3} \)
(6) \(\lim_{x \to 2^-} \frac{x - 3}{x^2 - 4} \).
(7) \(\lim_{x \to 2} \frac{x - 3}{x^2 - 4} \).
(8) \(\lim_{x \to 2} \frac{2 - x}{(x - 2)^3} \).
(9) \(\lim_{x \to 5} \frac{1}{(x - 5)^3} \).
(10) \(\lim_{x \to -2} \frac{x + 1}{(x - 3)(x + 2)} \).
(11) \(\lim_{x \to \pi/2} \tan x \).

Intuitively, \(\lim_{x \to \infty} f(x) = L \) (or, \(\lim_{x \to -\infty} f(x) = L \)) if \(x \) moves increasingly far from the origin in the positive direction (or, in the negative direction), \(f(x) \) gets arbitrarily close to \(L \).

Example 4.2. Clearly, \(\lim_{x \to \infty} \frac{1}{x} = 0 \) and \(\lim_{x \to -\infty} \frac{1}{x} = 0 \).

A line \(y = b \) is a horizontal asymptote of the graph of a function \(y = f(x) \) if either \(\lim_{x \to \infty} f(x) = b \) or \(\lim_{x \to -\infty} f(x) = b \).

Example 4.3. Evaluate \(\lim_{x \to \infty} 5 + \frac{1}{x} \).

Theorem 4.1 For any rational number \(t > 0 \),
\[
\lim_{x \to \pm \infty} \frac{1}{x^t} = 0,
\]
where for the case where \(x \to -\infty \), we assume that \(t = p/q \) where \(q \) is odd.

Theorem 4.2 For any polynomial of degree \(n > 0 \), \(p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \), we have
\[
\lim_{x \to \infty} p_n(x) = \begin{cases}
\infty & \text{if } a_n > 0 \\
-\infty & \text{if } a_n < 0
\end{cases}
\]

Example 4.4. Evaluate
\[
(1) \lim_{x \to \infty} \frac{2x^3 + 7}{3x^3 - x^2 + x + 7}.
(2) \lim_{x \to \infty} \frac{1}{x^2 - 7}.
(3) \lim_{x \to \infty} \frac{1}{x}.
(4) \lim_{x \to \infty} \frac{\sqrt{x^2 + 2x + 3}}{x} - x.
(5) \lim_{x \to \infty} \frac{\sin x}{x}.
(6) \lim_{x \to \infty} \sin x.
\]

Example 4.5. Find the horizontal asymptote(s) of \(f(x) = \frac{2 - x + \sin x}{x + \cos x} \).
Let \(f(x) = \frac{P(x)}{Q(x)} \). If (the degree of \(P \)) = (the degree of \(Q \))+1, then the graph of \(f \) has an oblique (slant) asymptote. We find an equation for the asymptote by dividing numerator by denominator to express \(f \) as a linear function plus a remainder that goes to 0 as \(x \to \pm \infty \).

Example 4.6. Find the asymptotes of the graph of \(f \), if

1. \(f(x) = \frac{x^2 - 3}{2x - 4} \).
2. \(f(x) = \frac{2x}{x + 1} \).

Example 4.7. Evaluate

1. \(\lim_{x \to 0^-} e^{\frac{1}{x}} \).
2. \(\lim_{x \to 0^+} e^{\frac{1}{x}} \).
3. \(\lim_{x \to \infty} \tan^{-1} x \).
4. \(\lim_{x \to -\infty} \tan^{-1} x \).
5. \(\lim_{x \to 0^+} \ln x \).
6. \(\lim_{x \to \infty} \ln x \).
7. \(\lim_{x \to 0} \sin \left(\frac{e^{-\frac{1}{x^2}}}{x} \right) \).
8. \(\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x} \).
9. \(\lim_{x \to -\infty} \frac{\sqrt{x^2 + 1}}{x} \).